ვერცხლი

(გადამისამართდა გვერდიდან Ag)
ტერმინს „ვერცხლი“ აქვს სხვა მნიშვნელობებიც, იხილეთ ვერცხლი (მრავალმნიშვნელოვანი).
ვერცხლი
47Ag
107.87
4d10 5s1

ვერცხლი[1][2] (ლათ. Argentum; ქიმიური სიმბოლო — ) — ელემენტთა პერიოდული სისტემის მეხუთე პერიოდის, პირველი ჯგუფის (მოძველებული კლასიფიკაციით — პირველი ჯგუფის თანაური ქვეჯგუფის, Iბ) ქიმიური ელემენტი. მისი ატომური ნომერია 47, ატომური მასა — 107.87, tდნ — 961.78 °C, tდუღ — 2162 °C, სიმკვრივე — 10.49 გ/სმ3. პლასტიკური გარდამავალი თეთრი ფერის კეთილშობილი ლითონი. ხასიათდება მაღალი ელექტრო- და სითბოგამტარობით, არეკვლის საუკეთესო უნარით. ბუნებრივი ვერცხლი შედგება ორი სტაბილური სიზოტოპისაგან (51.8%) და (48.2%). რადიოაქტიური იზოტოპებიდან მნიშვნელოვანია (T1/2=249.86 დღე-ღამე).

ვერცხლი, 47Ag
ზოგადი თვისებები
მარტივი ნივთიერების ვიზუალური აღწერა თეთრი ფერის პლასტიკური ლითონი
სტანდ. ატომური
წონა
Ar°(Ag)
107.8682±0.0002
107.87±0.01 (დამრგვალებული)
ვერცხლი პერიოდულ სისტემაში
წყალბადი ჰელიუმი
ლითიუმი ბერილიუმი ბორი ნახშირბადი აზოტი ჟანგბადი ფთორი ნეონი
ნატრიუმი მაგნიუმი ალუმინი სილიციუმი ფოსფორი გოგირდი ქლორი არგონი
კალიუმი კალციუმი სკანდიუმი ტიტანი ვანადიუმი ქრომი მანგანუმი რკინა კობალტი ნიკელი სპილენძი თუთია გალიუმი გერმანიუმი დარიშხანი სელენი ბრომი კრიპტონი
რუბიდიუმი სტრონციუმი იტრიუმი ცირკონიუმი ნიობიუმი მოლიბდენი ტექნეციუმი რუთენიუმი როდიუმი პალადიუმი ვერცხლი კადმიუმი ინდიუმი კალა სტიბიუმი ტელური იოდი ქსენონი
ცეზიუმი ბარიუმი ლანთანი ცერიუმი პრაზეოდიმი ნეოდიმი პრომეთიუმი სამარიუმი ევროპიუმი გადოლინიუმი ტერბიუმი დისპროზიუმი ჰოლმიუმი ერბიუმი თულიუმი იტერბიუმი ლუტეციუმი ჰაფნიუმი ტანტალი ვოლფრამი რენიუმი ოსმიუმი ირიდიუმი პლატინა ოქრო ვერცხლისწყალი თალიუმი ტყვია ბისმუტი პოლონიუმი ასტატი რადონი
ფრანციუმი რადიუმი აქტინიუმი თორიუმი პროტაქტინიუმი ურანი (ელემენტი) ნეპტუნიუმი პლუტონიუმი ამერიციუმი კიურიუმი ბერკელიუმი კალიფორნიუმი აინშტაინიუმი ფერმიუმი მენდელევიუმი ნობელიუმი ლოურენსიუმი რეზერფორდიუმი დუბნიუმი სიბორგიუმი ბორიუმი ჰასიუმი მეიტნერიუმი დარმშტადტიუმი რენტგენიუმი კოპერნიციუმი ნიჰონიუმი ფლეროვიუმი მოსკოვიუმი ლივერმორიუმი ტენესინი ოგანესონი
Cu

Ag

Au
პალადიუმივერცხლიკადმიუმი
ატომური ნომერი (Z) 47
ჯგუფი 11
პერიოდი 5 პერიოდი
ბლოკი d-ბლოკი
ელექტრონული კონფიგურაცია [Kr] 4d10 5s1
ელექტრონი გარსზე 2, 8, 18, 18, 1
ელემენტის ატომის სქემა
ფიზიკური თვისებები
აგრეგეგატული მდგომ. ნსპ-ში მყარი სხეული
დნობის
ტემპერატურა
961.78 °C ​(1234.93 K, ​​1763.2 °F)
დუღილის
ტემპერატურა
2162 °C ​(2435 K, ​​3924 °F)
სიმკვრივე (ო.ტ.) 10.49 გ/სმ3
სიმკვრივე (ლ.წ.) 9.320 გ/სმ3
დნობის კუთ. სითბო 11.28 კჯ/მოლი
აორთქ. კუთ. სითბო 254 კჯ/მოლი
მოლური თბოტევადობა 25.350 ჯ/(მოლი·K)
ნაჯერი ორთქლის წნევა
P (პა) 1 10 100 1 k 10 k 100 k
T (K)-ზე 1283 1413 1575 1782 2055 2433
ატომის თვისებები
ჟანგვის ხარისხი −2, −1, 0, +1, +2, +3
ელექტროდული პოტენციალი
ელექტრო­უარყოფითობა პოლინგის სკალა: 1.93
იონიზაციის ენერგია
  • 1: 731.0 კჯ/მოლ
  • 2: 2070 კჯ/მოლ
  • 3: 3361 კჯ/მოლ
ატომის რადიუსი ემპირიული: 144 პმ
კოვალენტური რადიუსი (rcov) 145±5 პმ
ვან-დერ-ვალსის რადიუსი 172 პმ

ვერცხლის სპექტრალური ზოლები
სხვა თვისებები
ბუნებაში გვხვდება პირველადი ნუკლიდების სახით
მესრის სტრუქტურა კუბური წახნაგცენტრირებული
ბგერის სიჩქარე 2680 m/s (ო. ტ.)
თერმული გაფართოება 18.9 µმ/(მ·K) (25 °C)
თბოგამტარობა 429 ვტ/(·K)
კუთრი წინაღობა 15.87 ნომ·მ (20 °C)
მაგნეტიზმი დიამაგნეტიკი
მაგნიტური ამთვისებლობა −19.5×10−6 სმ3/მოლ
იუნგას მოდული 83 გპა
წანაცვლების მოდული 30 გპა
დრეკადობის მოდული 100 გპა
პუასონის კოეფიციენტი 0.37
მოოსის მეთოდი 2.5
ვიკერსის მეთოდი 251 მპა
ბრინელის მეთოდი 206–250 მპა
CAS ნომერი 7440-22-4
ისტორია
აღმომჩენია ძვ. წ. 5000-მდე
ვერცხლის მთავარი იზოტოპები
იზო­ტოპი გავრცე­ლება­დობა ნახევ.
დაშლა
(t1/2)
რადიო.
დაშლა
პრო­დუქტი
105Ag სინთ 41.3 დღ-ღ ε 105Pd
γ
106mAg სინთ 8.28 დღ-ღ ε 106Pd
γ
107Ag 51.839% სტაბილური
108mAg სინთ 439 წ ε 108Pd
IT 108Ag
γ
109Ag 48.161% სტაბილური
110m2Ag სინთ 249.86 დღ-ღ β 110Cd
γ
111Ag სინთ 7.43 დღ-ღ β 111Cd
γ

ლითონთა შორის და გვხვდება როგორც მინერალებში, ისე თავისუფალი ფორმითაც. ვერცხლს იყენებენ მონეტებში, სამკაულებში, ჭურჭელში, ფოტოგრაფიასა და სარკეებში, ასევე თანამედროვე ტექნოლოგიებში.

ვერცხლი ცნობილი იყო ჯერ კიდევ ძვ. წ. IV ათასწლეულში ეგვიპტეში, სპარსეთში, ჩინეთში. ეს განპირობებული იყო იმით რომ ის როგორც ოქრო ძალიან ხშირად იყო თავისუფალი თვითნაბადი სახით, და არ იყო საჭირო მისი მადნიდან მიღება. ასურეთში და ბაბილონში ვერცხლი ითვლებოდა წმინდა ლითონად და მთვარის სიმბოლო იყო. სასაქონლო წარმოების პირობებში ოქროსთან ერთად ვერცხლი ასრულებდა საყოველთაო ეკვივალენტის ფუნქციას და ფულად იქცა, რასაც ხელი შეუწყო ვერცხლის თვისებებმა – ერთგვაროვნებამ, დამუშავების სიადვილემ და სხვა. თავდაპირველად ვერცხლი მიმოქცევაში იყო სხმულების სახით. ძვ. აღმოსავლეთის ქვეყნებში, აგრეთვე საბერძნეთსა და რომში, ვერცხლი როგორც ოქრო და სპილენძი, ფართოდ გავრცელებული ფულადი ლითონი იყო. ადრეულ საუკუნეებში უპირატესად ოქროს მონეტებს ჭრიდნენ; XVI ს-დან ოქროს უკმარისობისა და ევროპაში ვერცხლის მოპოვების გაფართოების გამო ვერცხლი ევროპის ქვეყნებში ძირითად ფულად ლითონად იქცა.

კაპიტალის თავდაპირველი დაგროვების ეპოქაში თითქმის ყველა ქვეყანაში არსებობდა ვერცხლის მონომეტალიზმი და ბიმეტალიზმი. ოქროს მსოფლიო მოპოვების ზრდამ დააჩქარა მიმოქცევიდან გაუფასურებული ვერცხლის გამოდევნა. მსოფლიოს ბევრ ქვეყანაში ოქროს ვალუტით ვერცხლის ვალუტის გამოდევნა XX ს-ის დასაწყისისათვის დამთავრდა. მეორე მსოფლიო ომამდე მოპოვებული ვერცხლის 75 %-ს მონეტების მოსაჭრელად იყენებდნენ, 1971 წლისათვის ეს მაჩვენებელი 5%-მდე შემცირდა.

ვერცხლი ბუნებაში

რედაქტირება

ვერცხლის საშუალო შემცველობა დედამიწის ქერქში (ალექსანდრე ვინოგრადოვის მიხედვით) 70 მგ/ტ არის. მისი მაქსიმალური კონცეტრაციაა თიხნარ ფენებში სადაც აღწევს 900 მგ/ტ. ვერცხლი ხასიათდება იონების დაბალი ენერგეტიკულობით,რაც იწვევს ამორფიზმის უმნიშვნელო გამოვლინებას და სხვა ლითონების მესრებში შედარებით რთულად შესვლას. შეინიშნება მხოლოდ ტყვიისა და ვერცხლის იონების იზომორფიზმი. ვერცხლის იონები შედიან თვითნაბადი ოქროს მესერში სადაც მისი რაოდენობა საკმაოდ დიდია. ვერცხლის იონების მცირე რაოდენობა შედის სპილენძის სულფიდების მესრებში, ასევე ტელურიდებში, ოქრო-კვარცულ საბადოებში.

კეთილშობილი და ფერადი ლითონების გარკვეული ნაწილი ბუნებაში გვხვდება თვითნაბადი სახით. დოკუმენტურად დამტკიცებულია და ცნობილია ვერცხლის არათუ დიდი არამედ უზარმაზარი თვითნაბადი ვერცხლის პოვნა. მაგალითად, 1477 წელს «წმინდა გიორგის" მაღაროებში (შნეებერგის საბადო ქალაქ ფრეიბერგიდან 40-45 კმ დაცილებით) იქნა აღმიჩენილი თვითნაბადი ვერცხლი წონით 20 ტ. ლოდი ზომით 1 × 1 × 2,2 მ გამოიტანეს მაღაროდან, და მასზე მოაწყვეს სადღესასწაულო სადილი, შემდეგ გახეთქეს და აწონეს. დანიაში კოპენჰაგენის მუზეუმში, ინახება თვითნაბადი ვერცხლი წონით 254 კგ, რომელიც 1666 წელს ნორვეგიის კონგსბერგის საბადოში იპოვეს. კანადის პარლამენტის შენობაში ინახება კობალტის საბადოებში ნაპოვნი თვითნაბადი ვერცხლის ფირფიტები წონით - 612 კგ. მეორე ფირფიტას რომელიც იქვე იქნა აღმოჩენილი უწოდეს "ვერცხლის საცალფეხო გზა " რადგან ის 30 მ. სიგრძის იყო და წონით 29 ტ. ვერცხლი ქიმიურად უფრო აქტიურია ვიდრე ოქრო ამიტომაც თვითნაბადი ვერცხლი უფრო იშვიათად გვხვდება ვიდრე ოქროსი. ამიტომაც მისი ხსნადობა უფრო მაღალია ვიდრე ოქროსი, ამიტომაც ზღვის წყალში მისი შემცველობაც შედარებით მაღალია (მიახლოებით 0,04 მკგ/ლ და 0,004 მკგ/ლ[3] შესაბამისად ).

ცნობილია 50 მეტი ვერცხლის მინერალი, რომელთაგან სამრეწველო მნიშვნელობისაა მხოლოდ 15-20, მათ შორის:

როგორც ყველა კეთილშობილი ლითონი, ვერცხლსაც ახასიათებს ორი ტიპის გამოვლინება:

  • თვითონ ვერცხლის საბადოები, სადაც შემცველი სასარგებლო კომპონენტების ღირებულების 50 %-ზე მეტს შეადგენს;
  • კომპლექსური ვერცხლშემცველი საბადოები (სადაც ვერცხლი შედის ფერადი, კეთილშობილი, ლეგირირებადი ლითონების მადნებში, როგორც მეორადი კომპონენტი).

აღსანიშნავია რომ მთლიანად ვერცხლის მოპოვების 75 %-ს შეადგენს კომპლექსურ საბადოებში ვერცხლის მიღება.

საბადოების მდებარეობა

რედაქტირება

ვერცხლის მნიშვნელოვანი საბადოები მდებარეობენ შემდეგი ქვეყნების ტერიტორიებზე:

გერმანია, ესპანეთი, პერუ, ჩილე, მექსიკა, ჩინეთი, კანადა, აშშ, ავსტრალია, პოლონეთი, რუსეთი, ყაზახეთი, რუმინეთი, შვედეთი, ჩეხეთი, სლოვაკეთი, ავსტრია, უნგრეთი, ნორვეგია[4].

ასევევ ვერცხლის საბადოები არის, სომხეთში, კვიპროსში, სარდინიაზე[5].

ფიზიკური თვისებები

რედაქტირება
 
თვითნაბადი ვერცხლი

წმინდა ვერცხლი — საკმაოდ მძიმეა (ტყვიაზე მჩატე, მაგრამ სპილენძზე მძიმეა), ძალიან პლასტიკური ლითონია (შუქის არეკვლის კოეფიციენტი 100 %-ს უახლოვდება). ვერცხლის თხელ ქაღალდს (ფოლგა, კილიტა) შუქის გავლისას აქვს იისფერი. დროთა განმავლობაში ლითონი ფერმკთალდება, რეაგირებს ჰაერში არსებული გოგირდწყალბადის ნარჩენებთან და წარმოქმნის ვერცხლის სულფიდის ზედა საფარ ფენას. გააჩნია მაღალი თბოგამტარობა. ოთახის ტემპერატურაზე მას გააჩნია ყველაზე მაღალი კუთრი გამტარობა სხვა ლითონებთან შედარებით.

ქიმიური თვისებები

რედაქტირება

ვერცხლი, როგორც კეთილშობილი ლითონი, გამოირჩევა შედარებით დაბალი რეაქციის უნარით, ის არ იხსნება მარილმჟავასა და გაზავებულ გოგირდმჟავაში. მაგრამ დამჟანგავ გარემოში (აზოტმჟავაში, ცხელ გოგირდმჟავაში, ასევე მარილმჟავაში თავისუფალი ჟანგბადის თანხლებით) ვერცხლი იხსნება:

Ag + 2HNO3(конц.) = AgNO3 + NO2↑ + H2O

იხსნება ის რკინის ქლორიდში:

Ag + FeCl3 = AgCl + FeCl2

ვერცხლი ასევე ადვილად იხსნება ვერცხლისწყალში, ამალგამის წარმოქმნით (ვერცხლისა და ვერცხლისწყლის თხევადი შენადნობი).

ვერცხლი ჟანგბადით არ იჟანგება ნაღალი ტემპერატურის პირობებშიც, მაგრამ ჟანგბადის პლაზმით ან ოზონით და ულტრაიისფერი დასხივებით მის ზედაპირზე წარმოიქმნება ჟანგის ფენა. ნოტიო ჰაერში სადაც არის ძალიან უმნიშვნელო ორ ვალენტიანი გოგირდის ნარჩენებ (გოგირდწყალბადი, ნატრიუმის ტიოსულფატი, რეზინი) წარმოიქმნება ნაკლებად ხსნადი ვერცხლის სულფიდის ფენა, აპკი, რაც ვერცხლის გამუქებას იწვევს:

4Ag + 2H2S + O2 = 2Ag2S + 2H2O

თავისუფალი ჰალოგენები ადვილად ჟანგავენ ვერცხლს ჰალოგენიდებამდე:

2Ag + I2 = 2AgI

მაგრამ შუქზე ეს რეაქცია შებრუნებადია და ვერცხლის ჰალოგენიდები (ფთორიდის გარდა) თანდათან იშლება.

ვერცხლის გოგირდთან ერთად გახურებისას წარმოიქმნება სულფიდი.

ყველაზე მდგრად დაჟანგვია ხარისხს ნაერთებში წარმოადგენს +1. ამიაკის თანხლებით ვრეცხლის ნაერთები (I) იძლევიან წყალში ადვილად ხსნად კომპლექს [Ag(NH3)2]+. ვერცხლი ასევე ქმნის კომპლექსებს ციანიდებთან. კომპლექსოწარმოქმნა გამოიყენება ვერცხლის ნაკლებად ხსნადი შენაერთების გასახსნელად, მადნებიდან ვერცხლის გამოსაყოფად. უფრო მაღალი დაჟანგვის ხარისხს (+2, +3) ვერცხლი ავლენს მხოლოდ ჟანგბადთან (AgO, Ag2O3) და ფთორთან (AgF2, AgF3), ასეთი ნაერთები უფრო არამდგრადები არიან, ვიდრე ვერცხლის (I) ნაერთები.

ვერცხლის მარილები (I), იშვიათი გამონაკლისის გარდა (ნიტრატი, პერქლორატი, ფთორიდი), წყალში უხსნადებია, რაც გამოიყენება ჰალოგენების იონების განსაზღვრისთვის (ქლორი, ბრომი, იოდი) წყლის ხსნარებში.

გამოყენება

რედაქტირება
 
ვერცხლის მონეტა
  • რადგანაც მას გააჩნია კარგი ელექტრო გამტარობა, თბოგამტარობა და მდგრადია ჟანგბადით დაჟანგვისადმი (ჩვეულებრივ პირობებში) გამოიყენება ელექტროტექნიკაში კონტაქტებისთვის, მაგალითად სარელეო კონტაქტები, ასევე მრავალფენოვანი კერამიკული კონდენსატორები.
  • ჩრჩილვის დროს: სპილენძ-ვერცხლის ჩრჩილვა პსრ-45 გამოიყენება სპილენძის ქვაბებისათვის, რაც უფრო მეტია ვერცხლის შემცველობა მით უფრო მაღალია ხარისხი; ზოგჯერ, ჩრჩილვის მასალად კალას ცვლიან ტყვიასა და ვერცხლს (რაოდენობის 5 %).
  • შენადნობების შემადგენლობაში: ბატარეის გალვანური ელემენტის კათოდების დასამზადებლად).
  • გამოიყენება როგორც ძვირფასი ლითონი საიუველირო საქმეში (ჩვეულებრივ სპილენძთან შენადნობში, ზოგჯერ კი ნიკელთან ერთად).
  • გამოიყენება მონეტების მოსაჭრელად, ორდენებისა და მედლების დასამზადებლად.
  • ვერცხლის ჰალოგენიდები და ვერცხლის ნიტრატი გამოიყენება ფოტოგრაფიაში, რადგან გააჩნია მაღალი შუქმგრძნობიარობა.
  • იოდოვანი ვერცხლი გამოიყენება კლიმატის მართვისათვის («ღრუბლების დაშლა»).
  • გამოიყენება მაღალი არეკვლის უნარის მქონე სარკის ზედაპირის დასაფარად (ჩვეულებრივ სარკეებში გამოიყენება ალუმინი).
  • ხშირად გამოიყენება როგორც კატალიზატორი ჟანგვის რეაქციებში, მაგალითად მეთანოლიდან ფორმალდეგიდების მისაღებად.
  • გამოიყენება როგორც სადეზინფექციო საშუალება, ძირითადად წყლისათვის. რამდენიმე ხნის წინ გაცივების სამკურნალოდ.

ვერცხლის გამოყენების სფეროები თანდათან ფართოვდება და მას არა მარტო შენადნობებში არამედ ქიმიურ შენაერთებშიც გამოიყენებენ. ვერცხლის ქლორიდი გამოიყენება ქლორი-ვერცხლი-თუთიის ბატარეებში, ზოგიერთი რადარის ზედაპირის დასაფერავად.

ვერცხლის ფტორიდის მონოკრისტალი გამოიყენება 0,193 მკმ ლაზერული გამოსხივების გენერაციისას (ულტრაფიალეტური გამოსხივება).

ვერცხლი გამოიყენება აირწინაღების ფილტრებში კატალიზატორად.

ვერცხლის აცეტილენიდი (კარბიდი) ზოგჯერ გამოიყენება როგორც ძლიერი დეტონატორი.

ვერცხლის ფოსფატი გამოიყენება სპეციალური მინების ხარშვისას, რომელიც გამოიყენება დოზიმეტრიული გამოსხივებისას. მისი მიახლოებითი შემადგენლობაა: ალუმინის ფოსფატი — 42 %, ბარიუმის ფოსფატი — 25 %, კალიუმის ფოსფატი — 25 %, ვერცხლის ფოსფატი — 8 %.

ვერცხლის პერმანგანატი, კრისტალური მუქი-იისფერი ფხვნილი, წყალში ხსნადი; გამოიყენება აირწინაღებში. კვების მრეწველობაში ვერცხლი დარეგისტრირებულია საკვები დანამატი Е174.

მედიცინაში

რედაქტირება

ვერცხლის გამოყენების ერთ-ერთი მთავარი სფეროა ალქიმია, რომელიც მჭოდროდაა დაკავშირებული მედიცინასთან. ჯერ კიდევ ძველი ეგვიპტელები იარებზე ვერცხლის ფირფიტებს ადებდნენ მისი ადვილად შესახორცებლად. ასევე უძველესი დროიდან იცოდნენ ვერცხლისაგან წყლის სასმელად ვარგისიანობის დიდი ხნით შენახვის შესახებ. მაგალითად სპარსეთის მეფე კიროსი წყალს საომარი მოქმედებებისას ვერცხლის ჭურჭელით ატარებდა. ცნობილი შუასაუკუნეების ექიმი პარაცელსუსი ზოგ დაავადებებს მკურნალობდა «მთვარის» ქვით.

ფარმაკოლოგიისა და ქიმიის განვითარებამ, და მრავალი სინთეზური წამლის გაჩენამ არ შეანელა ფარმაცევტების ყურადღება ვერცხლისადმი. ჩვენს დროში ვერცხლი ფართოდ გამოიყენება ინდურ ფარმაკოლოგიაში (ტრადიციული ინდური აურვედული პრეპარატების დასამზადებლად). აურვედა (Ayurveda) — ეს ძველი ინდური დიაგნოსტიკისა და მკურნალობის მეთოდია რომელიც მის ფარგლებს გარედ ნაკლებადაა ცნობილი. 500 მლნ. მეტი ადამიანი იღებს ასეთ პრეპარატერბს, ამიტომაც გასაგებიცაა, რომ ვერცხლის დიდი რაოდენობა გამოიყენება ინდოეთში. შედარებით ბოლო დროს გამოკვლევებმა აჩვენა რომ თავის ტვინი შეიცავს ვერცხლს. ასე რომ დაასკვნეს რომ ვერცხლი წარმოადგენს ორგანიზმისათვის აუცილებელ ნივთიერებას. მწვრილად დაქუცმაცებული ვერცხლი ფართოდ გამოიყენება წყლის გასაუვნებლად დეზინფექციისათვის. ვერცხლი იონებისსახით მეტად აქტიურად მოქმედებენ სხვა სახის იონებთან და მოლეკულებთან. მისი მცირე კონცენტრაცია სასარგებლოა, რადგანაც ის ანადგურებს ბევრ ავადმყოფობის გამომწვევ ბაქტერიებს. დადგენილია ასევე რომ, ვერცხლის იონების მცირე კონცენტრაცია ხელს უწყობს ორგანიზმის წინააღმდეგობის უნარის ამაღლებას სხვადასხვა ინფექციური დაავადებების წინააღმდეგ.

დიდი ხანია ცნობილია, რომ თუ კი ვერცხლის ელექტროდებს ჩავრთავთ რამდენიმე ვოლტ ძაბვაში, მაშინ მისი წყლის გაუვნებლობისა და დეზინფექციის თვისება საგრძნობლად იზრდება. განსაკუთრებით გაძლიერებული ეფექტი შეინიშნება თუ კი ელექტროდების ზედაპირზე გავზრდით ვერცხლის ნანოძელაკებს. ამ შემთხვევაში ძაბვის ჩართვა ელექტროდებზე საჭირო არ არის, არამედ შეიძლება გარე ველის შექმნით.

უფრო ეფექტურად მოქმედებს ვერცხლისა და ამიაკის კომპლექსური ნარევის სუსტი ხსნარი, რომელიც გამოიყენება მედიცინაში სახელწოდებით ამარგენი (წარმოებულია სიტყვები «ამიაკისა» და «არგენტუმისაგან»). ვერცხლის ნიტრატები ამარგენის ხსნარების სახით ფართოდ გამოიყენება ჭრილობების დასამუშავებლად ან ლორწოვანი გარსის ანთებების დროს, ასევე გამოიყენება ანტიბაქტერიული საშუალებების მისაღებად.

ფიზიოლოგიური ქმედება

რედაქტირება

ვერცხლის კვალი (მიახლოებით წონის 0,02 მგ/კგ) ნაპოვნია ყველა ცოცხალ ორგანიზმში. მაგრამ მისი ბიოლოგიური ქმედება შესწავლილი არ არის. ადამიანში ვერცხლის მაღალი შემცველობით ხასიათდება თავის ტვინი (0,03 მგ - 1000 გ ახალი ქსოვილი).[6].

საკვები რაციონით ადამიანი ვერცხლს იღებს მიახლოებით 0,1 მგ. დღეღამეში. შედარებით მეტს შეიცავს კვერცხის გული (0,2 მგ - 100 გ). ვერცხლი ორგანიზმიდან ჩვეულებრივ კალთან ერთად გამოდის[6].

ვერცხლის იონებს გააჩნიათ განსაკუთრებით ძლიერი ბაქტერიციდული თვისებები. ამ იონების ძალიან მცირე რაოდენობაც კი რომელიც ლითონიდან გადადის წყალში, საკმარისია, რომ წყალი არ გაფუჭდეს განუსაზღვრელი დროით.[6].

ვერცხლის ბაქტერიციდული ქმედების ქვედა ნიშნული შეფასებულია 1 მკგ/ლ[6].

ვერცხლი როგორც ყველა მძიმე ლითონი, ორგანიზმში ჭარბი რაოდენობით მოხვედრისას ტოქსიკურია[6].

აშშ-ის სანიტარული ნორმებით, ვერცხლის შემცველობა სასმელ წყალში არ უნდა აღემატებოდეს 0,05 მგ/ლ. ეს იმ დროს როცა წყალი გამოიყენება მუდმივად.

ორგანიზმში ვერცხლის ხანგრძლივი მიღებისას ვითარდება არგერია, გარეგნულად გამოიხატება მხოლოდ კანისა და ლორწოვანი გარსის სერი ფერით. ამ დროს რაიმე სახის დარღვევები უმრავლესად არ შეინიშნება.[6].

ვერცხლის მოპოვება

რედაქტირება

მიღებულია რომ, ვერცხლის პირველი საბადოები არსებობდა სირიაში საიდანაც გადაჰქონდათ ეგვიპტეში (5000-3400 წწ. ჩ.წ.ა.).

VI—V საუკუნეებში ჩვენ წელთ აღრიცხვამდე ვერცხლის მოპოვების ცენტრმა გადაინაცვლა ლავრიის მაღაროებში (საბერძნეთი).

ჩ.წ.ა. IV -დან I-ს-ის ბოლომდე ვერცხლის მოპოვების ლიდერი იყო ესპანეთი და კართაგენი.

II—XIII სს. მთელი ევროპის ტერიტორიაზე მრავალი მაღარო მოქმედებდა, რომლებიც თანდათან იფიტებოდნენ.

XV—XVI სს. პირველ რიგებში გადის მადნეულიანი მთები. ამ ძველ საბადოებს შორის უდიდესი გახდა 1623 წელს აღმოჩენილი თვითნაბადი ვერცხლის კონგსბერგის საბადო (ნორვეგია).

ამერიკის ათვისებამ გამოიწვია ახალი საბადოების აღმოჩენა კორდილიერებში. მთავარ წყაროს წარმოადგენდა მექსიკა, სადაც 1521—1945 წწ. მოპოვებული იქნა მიახლოებით 205 ათასი ტ ლითონი — ამ პერიოდში მოპოვებული ვერცხლის მესამედი. სამხრეთ ამერიკის უდიდეს საბადოში — პოტოსიში — 1556-დან 1783 წლამდე მოპოვებულ იქნა 820 513 893 პესო და 6 «მტკიცე რეალი» (ბოლო 1732 წელს უდრიდა 85 მარავედის)[7].

2008 წელს [8] სულ მოპოვებულია 20 900 ტ ვერცხლი. მოპოვების ლიდერია პერუ (3600 ტ), შემდეგ მოდის მექსიკა (3000 ტ), ჩინეთი (2600 ტ), ჩილე (2000 ტ), ავსტრალია (1800 ტ), პოლონეთი (1300 ტ), აშშ (1120 ტ), კანადა (800 ტ).

ვერცხლის მსოფლიო მარაგი შეფასებულია მიახლოებით 570 000 ტ.

საინტერესო ფაქტები

რედაქტირება

ვერცხლი — ოთახის ტემპერატურის პირობებში ყველაზე ელექტროგამტარი ლითონია.[9]

იხილეთ აგრეთვე

რედაქტირება

რესურსები ინტერნეტში

რედაქტირება
  1. დოლიძე ვ., ციციშვილი ვ., „ოთხენოვანი ქიმიური ლექსიკონი“, თბ., 2004, გვ. 197
  2. ქართული საბჭოთა ენციკლოპედია, ტ. 4, თბ., 1979. — გვ. 378.
  3. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  4. ვერცხლის საბადოების შესახებ». დაარქივებულია ორიგინალიდან — 2010-09-07. ციტირების თარიღი: 2010-10-16.
  5. ვერცხლის შესახებ» ვერცხლის ისტორია. დაარქივებულია ორიგინალიდან — 2010-02-13. ციტირების თარიღი: 2010-10-16.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 ნეკრასოვი ბ. ვ., {{{სათაური}}}, ტ. 3.
  7. პოტოსის ხაზინადარის დონ ლომბერტო დე სიერას წერილი იმპერატორ კარლ III, 16 ივლისი 1784 წ. // Colleccion de documentos ineditos para la historia de Espana. Tomo V. — Madrid, 1844.
  8. MINERAL COMMODITY SUMMARIES 2009
  9. გინესის რეკორდების წიგნი ქიმიური ნივთიერებებისთვის. დაარქივებულია ორიგინალიდან — 2012-01-05. ციტირების თარიღი: 2010-10-19.