დიაზოტის ტეტრაოქსიდი

ქიმიური ნივთიერება
(გადამისამართდა გვერდიდან დიაზოტის ტეტროქსიდი)
ამ გვერდს არა აქვს შემოწმებული ვერსია, სავარაუდოდ მისი ხარისხი არ შეესაბამებოდა პროექტის სტანდარტებს.
სათაურით „აზოტის ტეტრაოქსიდი“ ეს სტატია იძებნება. NO4 იხ. ნიტროზილის აზიდი.

დიაზოტის ტეტრაოქსიდი, რომელიც ძირითადად მოიხსენიება როგორც აზოტის ტეტრაოქსიდი, წარმოადგენს ქიმიურ ნივთიერებას ფორმულით N2O4. ის ქიმიური სინთეზის ერთ-ერთი ყველაზე საჭირო საჭირო რეაქტივია. ის თანაბარ წონასწორობაში იმყოფება აზოტის დიოქსიდთან.

დიაზოტის ტეტრაოქსიდი
დიაზოტის ტეტრაოქსიდი: ქიმიური ფორმულა
დიაზოტის ტეტრაოქსიდი: მოლეკულის ხედი
დიაზოტის ტეტრაოქსიდი: სტრუქტურა
ზოგადი
სისტემური სახელწოდებააზოტის ტეტრაოქსიდი
ქიმიური ფორმულაN2O4
მოლური მასა92.011 /მოლი
ფიზიკური თვისებები
მდგომარეობა (სტ. პირ.)უფერო სითხე/ფორთხოხლისფერი აირი
სიმკვრივე1.44246 გ/სმ3 (სითხე, 21 °C) /სმ³
თერმული თვისებები
დნობის ტემპერატურა−11.2 °C
დუღილის ტემპერატურა21.69 °C
აფეთქების ტემპერატურაარააალებადი °C
ორთქლის წნევა96 კპა (20 °C)[1]
ქიმიური თვისებები
ხსნადობა წყალშიმოქმედებს /100 მლ
ოპტიკური თვისებები
გარდატეხის მაჩვენებელი1.00112
სტრუქტურა
კრისტალური სტრუქტურა ბრტყელი, D2h
დიპოლური მომენტი ნული 
კლასიფიკაცია
CAS 10544-72-6
PubChem25352
EINECS234-126-4
SMILES
  • [O-][N+](=O)[N+]([O-])=O
RTECSQW9800000

დიაზოტის ტეტრაოქსიდი ძლიერ მჟანგავს წარმოადგენს, რომელიც ჰიპერგოლურია (თვითაალებადია) ჰიდრაზინის სხვადასხვა ფორმებთან, რაც ამ წყვილს უმნიშნველოვანეს სარაკეტო საწვავად აქცევს.

სტრუქტურა და თვისებები

რედაქტირება

დიაზოტის ტეტორქსიდი შეიძლება განვიხილოთ, როგორც ორი ნიტროგჯუფის (-NO2) ნაერთი ერთმანეთთან. ის წარმოქმნის ქიმიურ წონაწორობას აზოტის დიოქსიდთან .[2] მოლეკულა ბრტყელი ტიპისაა N-N ბმის სიგრძით 1.78 Å და N-O ბმის დაშორებით 1.19 Å. N-N ბმა შეესაბამება უფრო სუსტ ბმას, რადგან ის გაცილებით დიდია, ვიდრე ჩვეულებრივი N-N ერთმაგი ბმა, რომელიც 1.45 Å სიგრძისაა.[3]

NO2-ისაგან განსხვავებით N2O4-ის მოლეკულა დიამაგნიტურიამ რადგან ის გაუწყვილებელ ელექტრონებს შეიცავს.[4] სითხე უფეროა, მაგრამ შეიძლება მოყავისფრო-მოყვითალო ფერი ჰქონდეს მასში NO2ის არსებობის გამო, რომელიც შემდეგ რეაქციას შეესაბამება:

N2O4 ⇌ 2 NO2

ტემპერატურის აწევა წონასწორობას მარჯვენა მხარეს წევს. შესაბამისად გარდაუვალია დიაზოტის ტეტრაოქსიდის შემცველობა სმოგში, რომელიც ძირითადად აზოტის დიოქსიდისაგან შედგება.

წარმოება

რედაქტირება

დიაზოტის ტეტორქსიდის წარმოება მიმდინარეობს ამიაკის კატალიზური დაჟანგვით: ორთქლში, რომელიც ჟანგვის ტემპერატურის დასაწევად გამოიყენება გამხსნელის სახით. პირველ საფეხურში ამიაკი იჟანგება აზოტოვან ოქსიდამდე:

4NH3 + 5O2 → 4NO + 6H2O

წყლის უმეტესი ნაწილი კონდენსირდება. აირების დარჩენილი ნაწილი ცივდება. წარმოქმნილი აზოტოვანი ოქსიდი იჟანგება აზოტის დიოქსიდამდე, რომელიც შემდეგ დიმერიზირდება დიაზოტის ტეტრაოქსიდში:

2NO + O2 → 2NO2
2NO2 ⇌ N2O4

დარჩენილი წყალი რეაქციის არედან აზოტმჟავის სახით შორდება. აირი ძირითადად სუფთა აზოტის დიოქსიდისაგან შედგება, რომელიც დიაზოტის ტეტრაოქსიდში კონდენსირდება ცივ გამათხევადებელ ჭურჭელში.

დიაზოტის ტეტრაოქსიდის წარმოება ასევე შესაძლებელია კონცენტრირებული აზოტმჟავისა და მეტალური სპილენძის ურთიერთქმედებით. სინთეზის ეს გზა უფრო ლაბორატორიებში გამოიყენება და ჩვეულებრივ სადემონსტრაციო რეაქციას წარმოადგენს საწყებით სკოლებში. აზოტმჟავის მიერ სპილენძის ჟანგვის პროცესი კომპლექსური პროცესია და მის შედეგად აზოტმჟავის კონცენტრაციაზე, ჟანგბადის თანაარსებობაზე და სხვა ფაქტორებზე დამოკიდებულებვით აზოტის ოქსიდების მთელი რიგი წარმოიქმნება. მიუხედავად ამისა, რეაქციის არასტაბილური პროდუქტების ჟანგვის საბოლოო შედეგს მაინც აზოტის დიოქსიდი წარმოადგენს, რომლის გაშრობის, გასუფთავებისა და გაციების შემდეგ მაინც თხევად დიაზოტის ტეტრაოქსიდს მივიღებთ.

სარაკეტო საწვავად გამოყენება

რედაქტირება

დიაზოტის ტეტრაოქსიდი გამოყენება სარაკეტო საწვავებში მჟანგავად მის ერთ-ერთ უმნიშვნელოვანეს გამოყენების სფეროს წარმოადგენს იმიტომ, რომ მისი შენახვა თხევად მდგომარეობაში შესაძლებელია ოთახის ტემპერატურაზეც. პირველად დიაზოტის ტეტრაოქსიდის სარაკეტო მჟანგავად გამოიყენეს გერმანელებმა 1944 წელს, თუმცა მაშინ ის მხოლოდ უმნიშვნელო ნაწილს წარმოადგენდა ე.წ. S-Stoffისა, რომელიც სინამდვილეში [[წითლად მბოლავი აზოტმჟავა|წითლად მბოლავ აზოტმჟავას წარმოადგენდა. 1950-იან წლებში ის აირჩიეს როგორც შენახვადი მჟანგავი საკმაოდ დიდი რაოდენობის რაკეტებში გამოსაყენებლად როგორც საბჭოთა კავშირში, ისე აშშ-ში. ის ჰიპერგოლურია ჰიდრაზინთან შეხებისას. ამ წყვილის ერთ-ერთი პირველი გამოყენება მოხდა ტიტანის სარაკეტო ოჯახში, რომლებიც ერთ-ერთ პირველ ინტერკონტინენტალურ ბალისტიკურ რაკეტას წარმოადგენდა და შემდგომში გამოიყენებოდა როგორც გამშვები ხომალდი ბევრი კოსმოსური ხომალდისათვის. ის გამოიყენებოდა როგორც აშშ-ს Gemini-სა და Apollo კოსმოსურ ხომალდებზე, ასევე Space Shuttle-ზე. ის დღემდე გამოიყენება როგორც გეოსტაციონარული თანამგზავრების ორბიტაზე შესანარჩუნებელი ძრავებისათვისა და ღრმა კოსმოსის შემსწავლელ ცდებზე. როგორც ჩანს, NASA აპირებს გააგრძელოს ამ მჟანგავის გამოყენება იმ ხომალდებზე, რომლებიც Space Shuttle-ს შეცვლიან. ის ასევე წამყვანი მჟანგავია რუსულ რაკეტა "პროტონ"-ზე.

საწვავად გამოყენებისას დიაზოტის ტეტროქსიდი ჩვეულებრივ მოიხსენიება როგორც 'აზოტის ტეტროქსიდი' და აბრევიატურა 'ნტო'. დამატებით, მცირე პროცენტულობით ნტო ასევე გამოიყენება აზოტოვანი ოქსიდის მცირე დანამატებით, რომელიც ხელს უშლის ტიტანის შენადნობებში სტრესულ-კოროზიული ბზარების გაჩენას. ამის გამო საწვავად მზა ნტო ხშირად მოიხსენიება როგორც "აზოტის ოქსიდების ნარევი" ან "აონ". თანამედროვე სარაკეტო სისტემებში უფრო და უფრო ხშირად გამოიყენება აონ ნტო-ს ნაცვლად; მაგალითად, Space Shuttle რეაქციის კონტროლის სისტემა იყენებდა აონ3-ს(ნტო 3% NO-ს შემცველობით.[5]

აპოლონ-სოიუზის შემთხვევა

რედაქტირება

1975 წლის 24 ივლისს ნტო-თი მოიწამლა სამი აშშ-ს წარმომადგენელი ასტრონავტი, რომლებიც იმყოფებოდნენ აპოლო-სიუზის სატესტო პროექზე დაშვებისას. შემთხვევა მოხდა გადამრთველის არასწორი პოზიციაში დატოვების გამო, რამაც გამოიწვია ნტო-ს ორთქლის აპოლონის კოსმოსური ხომალდის შიდა სავენტილაციო სისტემაში მოხვედრა. დაშვებისას ერთმა ასტრონავტმა გონებაც კი დაკარგა. დაშვების შემდეგ ეკიპაჟი საავადმყოფოში იწვა 14 წლის განმავლობაში ქიმიურად გამოწვეული პნევმონიისა და ედემის გამო.[6]

ელექტროგენერატორები N2O4-ის ბაზაზე

რედაქტირება

ტენდენცია. რომ N2O4 შეიძლება შექცევადად დაიშალოს NO2-ად, მიგვიყვანა კვლევებამდე, რომლებიც მიმართული იყო ე.წ. დისოციაციური გაზის გამოყენებით მაღალტექნოლოგიურ ელ-გენერატორების შემუშავებაზე[7] "ცივი" დიაზოტის ტეტორქსიდი იკუმშება და თბება, რაც მის აზოტის დიოქსიდამდე დისოციაციას იწვევს, ნახევარ მოლეკულურ მასად. მიღებული ცხელი აზოტის დიოქსიდი ფართოვდება ტურბინაში, აციებს მას და ამცირებს წნევას და უფრო ძალიან ცივდება თბოგამტარ ფენაზე, რაც მის უკან გადაქცევას იწვევს დიაზოტის ტეტრაოქსიდად და იბრუნებს საწყის მოლეკულურ მასას. ამ დროს ძალიან ადვილია ამ პროცესის თავიდან გამეორება. ასეთ დისოციაციურ გაზის ბრეიტონის ციკლს გააჩნია პოტენციალი საგრძნობლად გაზარდოს ელ-ენერგიის მიღების კოეფიციენტი.[8]

ქიმიური რეაქციები

რედაქტირება

შუალედური ნივთიერება აზოტმჟავის წარმოებისას

რედაქტირება

აზოტმჟავის დამზადების სამრეწველო ხერხი N2O4-ს მოიხმარს. ნივთიერება რეაქციაში შედის წყალთან და ქმნის აზოტოვანი მჟავასა და აზოტმჟავას:

N2O4 + H2O → HNO2 + HNO3

თანაპროდუქტი HNO2 გათბობისას იშლება აზოტოვან ოქსიდად და კიდევ უფრო მეტ აზოტმჟავად. ჟანგბადთან შეხებისას NO ისევ აზოტის დიოქსიდად გარდაიქმნება:

2 NO + O2 → 2 NO2

შედეგად მიღებული NO2 (და რა თქმა უნდა N2O4) ციკლში თავიდან ბრუნდება აზოტოვანი და აზოტის მჟავების წარმოსაქმნელად.

მეტალის ნიტრატების სინთეზი

რედაქტირება

N2O4 იქცევა როგორც მარილი [NO+] [NO3], სადაც უკანასკნელი ძლიერი მჟანგავია:

2 N2O4 + M → 2 NO + M(NO3)2

სადაც M = Cu, Zn, ან Sn.

თუ მეტალის ნიტრატები N2O4-გან მთლიანად უწყლო გარემოში მზადდება, შედეგად შეიძლება გარდამავალ მეტალებთან რამდენიმე კოვალენტური ნიტრატის მიღებაც შეიძლება. ამის მიზეზი ნიტრატის იონის თერმოდინამიკური მისწრაფებაა ასეთ მეტალებთან იონური სტრუქტურის მაგიერ კოვალენტური ბმები წარმოქმნას. ასეთი ნივთიერებები ჩვეულებრივ უწყლო გარემოში მზადდება, რადგან ნიტრატის იონი გაცილებით სუსტი ლიგანდია, ვიდრე წყალი და თუ რეაქციის არეში წყალი მოხვდება, რეაქციის გამოსავალს მარტივი ჰიდრატირებული მარილები წარმოადგენენ. უწყლო ნიტრატები როგორც წესი კოვალენტური ნაერთებივით იქცევია და ბევრი მაგალითად უწყლო სპილენძის ნიტრატი საკმაოდ აგრესიულ ნაერთებს წარმოადგენენ ოთახის ტემპერატურის დროსაც კი. უწყლო ტიტანის ნიტრატი ვაკუუმში სუბლიმაციას სულ რაღაც 40 °C-ზე განიცდის. ბევრი გარდამავალი ჯგუფის მეტალების უწყლო ნიტრატები კაშკაშა ფერისაა. ქიმიის ეს განხრა კლიფორდ ედისონისა და ნორამნ ლოგანის მიერ იქნა შემუშავებული ნოტინჰემის უნივერსიტეტში ბრიტანეთში 1960-1970იან წლებში, როცა ხელმისაწვდომი გახდნენ მაღალეფექტური დესიკანტები და მშრალი ყუთები.

რესურსები ინტერნეტში

რედაქტირება
  1. International Chemical Safety Card. დაარქივებულია ორიგინალიდან — 2005-09-08. ციტირების თარიღი: 2016-08-01.
  2. Henry A. Bent Dimers of Nitrogen Dioxide. II. Structure and Bonding Inorg. Chem., 1963, 2 (4), pp 747–752
  3. R.H. Petrucci, W.S. Harwood and F.G. Herring General Chemistry (8th ed., Prentice-Hall 2002), p.420
  4. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  5. დაარქივებული ასლი. დაარქივებულია ორიგინალიდან — 2008-05-11. ციტირების თარიღი: 2016-08-01.
  6. Sotos, John G., MD. "Astronaut and Cosmonaut Medical Histories", May 12, 2008, accessed April 1, 2011.
  7. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800008230.pdf
  8. Ragheb, R.. Nuclear Reactors Concepts and Thermodynamic Cycles. ციტირების თარიღი: 1 May 2013.