რგოლი (მათემატიკა)
რგოლი – მათემატიკაში, კერძოდ აბსტრაქტულ ალგებრაში არის ალგებრული სტრუქტურა, რომელშიც განმარტებულია ორი ბინარული ოპერაცია და ისინი აკმაყოფილებენ გარკვეულ პირობებს.
რგოლების მაგალითებია მთელ რიცხვები, პოლინომები, მატრიცები და ა.შ.
მათემატიკური განმარტება
რედაქტირებარგოლი არის სტრუქტურა (R, +, *, 0, 1), სადაც R არის სიმრავლე, + და * წარმოადგენს ორ ოპერაციას (ხშირად მოიხსენიება, როგორც შეკრება და გამრავლება, თუმცა კერძო შემთხვევებში შეიძლება განსხვავდებოდეს მათი ჩვეულებრივი გაგებისგან) განმარტებულს ამ სიმრავლეზე, 0 და 1 კი ამ ოპერაციების ნეიტრალურ ელემენტებს, შესაბამისად. რგოლი, განმარტების თანახმად, აკმაყოფილებს შემდეგ აქსიომებს:
1. (R, +, 0) არის კომუტაციური ჯგუფი:
- (a + b) + c = a + (b + c)
- 0 + a = a + 0 = a
- ყოველი a–სთვის არსებობს ელემენტი -a (მოიხსენიება, როგორც მოპირდაპირე ელემენტი) ისეთი რომ, a + −a = −a + a = 0
- a + b = b + a (კომუტაციურობა)
2. (R, ·, 1) არის მონოიდი:
- (a·b)·c = a·(b·c)
- 1·a = a·1 = a
3. ოპერაციები დაკავშირებულია დისტრიბუციულობის აქსიომებით:
- a·(b + c) = (a·b) + (a·c)
- (a + b)·c = (a·c) + (b·c)
რგოლს, რომელშიც მონიოდი (R,·,1) კომუტაციურია, ანუ a·b=b·a, კომუტაციური რგოლი ეწოდება. მაგალითად, მთელი რიცხვების რგოლი და პოლინომთა რგოლი კომუტაციური რგოლებია, ხოლო მატრიცების რგოლი მოცემულ ველზე – არაკომუტაციური.
კომუტაციურ რგოლს, რომელშიც ყველა ნულისგან განსხვავებულ a ელემენტს გააჩნია შებრუნებული გამრავლების ოპერაციის მიმართ b, ანუ a·b = b·a = 1, ეწოდება ველი.