განტოლება: განსხვავება გადახედვებს შორის

212.58.121.166-ის რედაქტირებები გაუქმდა; აღდგა Boehm-ის მიერ რედაქტირებული ვერსია
No edit summary
იარლიყები: რედაქტირება მობილურით საიტის რედაქტირება მობილურით
(212.58.121.166-ის რედაქტირებები გაუქმდა; აღდგა Boehm-ის მიერ რედაქტირებული ვერსია)
იარლიყი: სწრაფი გაუქმება
 
 
ერთობლიობას განტოლებისა, რომელთათვისაც მოსაძებნია უცნობების მნიშვნელობები, რომლებიც ერთდროულად დააკმაყოფილებენ ყველა ამ განტოლებას, განტოლებათა სისტემა ეწოდება; ხოლო უცნობების მნიშვნელობებს, რომლებიც ერთდროულად დააკმაყოფილებენ სისტემის ყველა განტოლებას — სისტემის ამონახსნები. მაგ., <math>X+2Y=5</math>, <math>2X+Y-Z=1</math> არის სამუცნობიანი ორი განტოლების სისტემა; ამ სისტემის ერთ-ერთი ამონახსნია <math>X=1</math>, <math>Y=2</math>, <math>Z=3</math>. განტოლებათა ორ სისტემას (ან ორ განტოლებას) ტოლფასი ეწოდება. თუ ერთი სისტემის (ერთი განტილების) ყოველი ამონახსნი წარმოადგენს მეორე სისტემის (მეორე განტოლების) ამონახსნს და პირუკუ. ამასთანავე ორივე სისტემა (ორივე განტოლება) ერთსა და იმავე არეში განიხილება. განტოლების ამონახსნთა მოსაძებნად ხშირად გვიხდება მოცემული განტოლების შეცვლა ტოლფასით, ზოგჯერ კი — მოცემული განტოლების შეცვლა განტოლებით, რომლის ამონახსნთა ერთობლიობა უფრო ფართოა, ვიდრე მოცემულისა. უკანასკნელ შემთხვევაში ახალი განტოლების ამონახსნებს, რომლებიც არ აკმაყოფილებენ მოცემულ განტოლებას, გარეშე ამონახსნები ეწოდება. მაგ., <math>\sqrt{X-3=-2}</math> განტოლების კვადრატში აყვანით, ვღებულობთ <math>X-3=4</math> ფანტოლებას, რომლის <math> X=7</math> ფესვი გარეშეა გამოსავალი განტილებისთვის. ამიტომ თუ განტოლების ამოხსნის დროს ვასრულებთ ისეთ ოპერაციებს, რომლებმაც შეიძლება მიგვიყანოს გარეშე ამონახსნებამდე, აუცილებელია გარდაქმნილი განტოლების მიღებული ამონახსნების შემოწმება მათი ჩასმით გამოსავალ განტოლებაში.
 
ავტირი ბექა ბექურაიძე
{{მათემატიკა}}