დეკარტული ნამრავლი

ამ გვერდს არა აქვს შემოწმებული ვერსია, სავარაუდოდ მისი ხარისხი არ შეესაბამებოდა პროექტის სტანდარტებს.

ორი სიმრავლის დეკარტული ნამრავლი სიმრავლეთა თეორიაში არის ყველა ისეთ დალაგებული წყვილის სიმრავლე, რომლის პირველი ელემენტი პირველი სიმრავლიდანაა, ხოლო მეორე ელემენტი — მეორიდან.

მათემატიკურად დეკარტული ნამრავლი შემდეგი ფორმულით გამოისახება:

მაგალითად, სიმრავლის {ა,ბ,გ} დეკარტული ნამრავლი სიმრავლეზე {დ,ე} იქნება სიმრავლე {(ა,დ),(ბ,დ),(გ,დ),(ა,ე),(ბ,ე),(გ,ე)}

დეკარტული ნამრავლი შესაძლებელია იგივე პრინციპით სამი ან მეტი სიმრავლის ნამრავლზეც განზოგადდეს.

სიმრავლეების X1, ..., Xn დეკარტული ნამრავლი არის ისეთი დალაგებული n-ეულების სიმრავლე, რომელთაგანაც პირველი ელემენტი X1 სიმრავლიდანაა, მეორე - X2-დან და ასე შემდეგ.

აუცილებელი არ არის, რომ სიმრავლეებს, რომლებსაც ვამრავლებთ, თანაკვეთა არ ჰქონდეთ. მათი თანაკვეთა შეიძლება ცარიელი იყოს, მოიცავდეს ორივე სიმრავლის ნაწილს, ან სულაც ერთ-ერთი სიმრავლე მეორის ქვესიმრავლე იყოს (მათ შორის შესაძლოა სიმრავლეები ტოლი იყოს).

მაგალითად სიმრავლეების {ა,ბ} და {ბ,გ} ნამრავლი იქნება {(ა,ბ),(ა,გ),(ბ,ბ),(ბ,გ)}

სიმრავლის საკუთარ თავზე დეკარტულ ნამრავლს მისი დეკარტული კვადრატი ეწოდება. შესაბამისად განიმარტება სიმრავლის სხვა, უფრო მაღალი, ხარისხებიც.