მთავარი მენიუს გახსნა

ცვლილებები

არ არის რედაქტირების რეზიუმე
 
==აბსტრაქციის პრინციპი==
თუ მოცემულია ეკვივალენტობის ტიპის მიმართება, მაშინ ეს მიმართება მისი განსაზღვრების მთელ არეს ყოფს კლასებად, რომლებიც ერთმანეთს არ კვეთენ (როგორი წყვილიც არ უნდა ავიღოთ ამ კლასებისა, მათ საერთი საგანი არ ექნებათ). ამ კლასებს, მოცემული მიმართების ''აბსტრაქციის კლასები'', ხოლო კლასების მთელ სიმრავლეს — ''ფაქტორ სიმრავლე''. ორი საგანი შევა ერთსა და იმავე კლასში მხოლოდ მაშინ, როდესაც მათ შორის ადგილი აქვს მოცემულ მიმართებას. ასეთ შემთხვევაში შეგვიძლია ვთქვათ, რომ აბსტრაქციის ერთსა და იმავე კლასში მოხვედრილი საგნები ერთმანეთის იგივეობითია რაღაც თვალსაზრისით. უფრო ზუსტად შეგვიძლია დავუშვათ, რომ აბსტრაქციის თითოეული კლასისთვის არსებობს ობიექტი, რომელიც არის ამ კლასში შემავალი საგნების საერთო თვისება ან საგანი, რომელსაც ეს თვისება აქვს, აბსტრაქციის კლასები კი მივიჩნიოთ ამ ობიექტის კონკრეტულ წარმომადგენლებად, ეგზემპლარებად. ახალ ობიექტებზე ამბობენ, რომ ისინი მიღებული არიან ეკვივალენტობის მოცემულ მიმართებასთან დაკავშირებული აბსტრაქციით. მაგალითად, პარალელობის მიმართება წრფეებს შორის გვაძლევს წრფეთა სიმრავლის ზემოდახასიათებულ დაყოფას. აბსტრაქციის თითოეულ კლასში მოხვდება ყველა ერთმანეთის პარალელური წრფე, ხოლო მათი საერთი თვისება იქნება გარკვეული მიმართულება. სწორედ მიმართულების ცნება იქნება ის ახალი ობიექტი, რომელიც პარალელობასთან დაკავშირებული აბსტრაქციით მიიღება. აბსტრაქციის პრინციპი არის დაზუსტებული სახე ე.წ. ''განმაზოგადებელი აბსტრაქციისა'', რომელიც საგანთა ერთობლიობის და ამ ერთობლიობაში შემავალი ყველა საგნის საერთო თვისების დამოუკიდებელი ობიექტის სახით გააზრებაში მდგომარეობს. აბსტრაქციის პრინციპს ხშირად ''გაიგივების აბსტრაქციას'' უწოდებენ.
 
== ლიტერატურა ==
* ''ფილოსოფია – ტ. რეხვიაშვილი, ვ. ჭიაურელი – თბილისი, 2006 წ. გვ. 233''