წრფივი ალგებრა: განსხვავება გადახედვებს შორის

არ არის რედაქტირების რეზიუმე
 
 
===== 1. წრფივი სივრცე =====
 
განსზღვრება 1.1
დამტკიცება
 
თუ a ≠ 0 და a • s = 0, გავამრავლოთ ტოლობა a¯-ზე. გვექნება 0 = a¯ • 0 = a¯ • a • s = 1 • s = s.
 
0 = a¯ • 0 = a¯ • a • s = 1 • s = s
 
თვით ველი წრფივი სივრცის ერთ ერთი მაგალითია იმავე ოპერაციების მიმართ რაც ველშია განსაზღვრული.
 
ასახვის ნამრავლი ველის ელემენტზე განისაზღვროს ტოლობით
 
(a • f)(x) = a • (f(x))
 
ადვილი შესამოწმებელია, რომ მივიღეთ წრფივი სივრცე.
 
მაგალითი 1.5
 
სივრცეში M(B, V) გამოვყოთ ქვესივრცე ასახვებისა რომელთა მნიშვნელობები მხოლოდ სასრულ რაოდენობა არგუმენტზეა ნულისაგან განსხვავებული, თითქმის ყველგან ნულია. აღვნიშნოთ იგი F(B, V)-ით. თუ თვით სიმრავლე B სასრულია, მაშინ, რასაკვირველია, F(B, V) = M(B, V). თვით B განვიხილოთ ჩადგმული ამ სივრცეში: თუ b ∈ B, განვიხილოთ b როგორც ასახვა, რომელიც თვით b-ს შეუსაბამებს ველის ერთიანს, ხოლო ყველა დანარჩენს ნულს. სივრცის F(B, V) ყოველი ელემენტი a: B → V შეგვიძლია წარმოგვიდგინოთ კომბინაციის სახით a = ∑ a(b) • b.
 
მაგალითი 1.6
 
პოლინომთა სიმრავლე წრფივი სივრცის მაგალითია. ავირჩიოთ რაიმე სიმბოლო, ვთქვათ x, და განვიხილოთ ფორმალურ ხარისხთა სიმრავლე X = {x⁰ = 1, x¹ = x, x², x³, . . .}. წრფივი სივრცე F(X, V) იქნება მრავალწევრთა წრფივი სივრცე V[x]. მისი ყოველი ვექტორი a, ანუ ასახვა X-დან V-ში შეიძლება ჩავწეროთ შემდეგი სახით
 
a₀ + a₁ • x + a₂ • x² + a₃ • x³ + . . .
 
სადაც
 
a₀ = a(1), a₁ = a(x), a₂ = a(x²), a₃ = a(x³), . . .
 
ველის V ელემენტებია.
 
მაგალითი 1.7
 
თუ შემოვიფარგლებით მხოლოდ k-ზე ნაკლები ხარისხის მრავალწევრებით, მივიღებთ წრფივ სივრცეს V[x, k]-ს.
 
V[x, 1] = V, V[x, 2] = {a₁ • x + a₀}, . . .
 
 
მაგალითი 1.8
 
წრფივი სივრცის კლასიკური მაგალითია ველის ელემენტთა n-ეულების სიმრავლე Vn. თუ ავიღებთ სიმრავლეს B = {1, 2, . . ., n}, მაშინ Vn = F(B, V). ჩვეულებრივ მის ვექტორს, ანუ ასახვას B → V წარმოადგენენ როგორც (u1, u2, . . .). ოპერაციები ასე შეიძლება ჩაიწეროს
 
(u1, u2, . . .) + (v1, v2, . . .) = (u1 + v1, u2 + v2, . . .)
 
v • (u1, u2, . . .) = (v • u1, v • u2, . . .)
 
 
2. ქვესივრცე
 
წრფივი სივრცის ქვესიმრავლე თუ სივრცეში განსაზღვრული ოპერაციების მიმართ ჩაკეტილია, მაშინ იგი თვით იქნება წრფივი სივრცე. ამგვარ ქვესიმრავლეს ქვესივრცეს უწოდებენ.
 
 
მაგალითი 2.2
 
წრფივი სივრცის S ყოველი ქვესიმრავლე B განსაზღვრავს წრფივ სივრცეს F(B, V). თუ ასახვას f: B → V შევუსაბამებთ S-ის ვექტორს ∑f(b) • b მივიღებთ ასახვას F(B, V) → S. გამოსახულებას ∑f(b) • b შეიძლება შევხედოთ როგორც F(B, V)-ის ელემენტს და შეიძლება შევხედოთ როგორც S-ის ელემენტს. ეს ორი ხედვა უნდა განვასხვავოთ. პრიველი ხედვით განსხვავებული გამოსახულება შეიძლება მეორე ხედვით ტოლი აღმოჩდეს. ამ ასახვის ანასახი იქნება S-ის უმცირესი ქვესივრცე რომელიც მოიცავს B-ს. ამ ქვესივრცეს B-თი წარმოქმნილს უწოდებენ და V[B]-თი აღვნიშნავთ.
 
მაგალითი 2.3
 
ქვესივრცის კიდევ ერთი მაგალითია V[x, k]. ყოველი k-სათვის ის წრფივი სივრცე V[x]-ის ქვესივრცეა, V[x, k] ⊂ V[x].
 
 
3. აფინური სივრცე
 
განმარტება 3.1
 
წრფივი სივრცე S-ის მიმართ აფინურ სივრცეს უწოდებენ სიმრავლე A-ს და მასში განმარტებულ ოპერაციას:
 
A-ს წერტილს მიმატებული S-ის ვექტორი, თუ
 
1. ყოველი a-სათვის A-დან და s-სათვის S-დან a + s განმარტებულია და ეკუთვნის A-ს
 
2. ყოველი a და b წერტილებისათვის A-დან არსებობს ერთადერთი ვექტორი S-დან s, რომლისათვისაც a + s = b
 
3. (a + s) + t = a + (s + t), ყოველი a-სათვის A-დან და s და t-სათვის S-დან
 
მაგალითი 3.2
 
აფინური სივრცის ყველაზე გავრცელებულ მაგალითს იძლევა ქვესივრცე. ვთქვათ T არის S-ის ქვესივრცე. ავირჩიოთ რაიმე წერტილი S-დან s და განვიხილოთ ყველა ჯამი s + t, სადაც t ეკუთვნის T-ს, ანუ სიმრავლე s + T. ეს სიმრავლე იქნება T-ს მიმართ აფინური სივრცე.
 
 
4. ფაქტორსივრცე
 
ავიღოთ S-ში ქვესივრცე T. ნებისმიერი ელემენტისათვის u სივრციდან S განვიხილოთ u + T ქვესიმრავლე. ეს ქვესიმრავლე T-ს მიმართ აფინური სივრცეა. მთელი სივრცე დაიყოფა ურთიერთ არაგადამკვეთ აფინურ სივრცეებად, შრეებად. თუ ვექტორი v შედის u + T შრეში, მაშინ v = u + t, სადაც t ქვესივრცე T-ს ვექტორია. ამიტომ შრეები u + T და v + T ერთი და იგივეა, ანუ u + T = v + T. შრეები ან არ გადაიკვეთება, ან ემთხვევა ერთმანეთს. ერთერთი ამგვარი შრე თვით ქვესივრცე T-ა. ამ შრეთა ერთობლიობა წრფივი სივრცეა ინდუცირებული შეკრებისა და ველის ელემენტზე გამრავლების მიმართ. ამ წრფივ სივრცეს ფაქტორსივრცეს უწოდებენ და აღნიშნავენ S / T-თი.
 
 
თეორემა 4.1
 
თუ R და T-ს თანაკვეთა ნულია, მაშინ R-ს შეესაბამება S / T-ში R-ის იზომორფული ქვესივრცე.
 
20

რედაქტირება