ფერმას დიდი თეორემა: განსხვავება გადახედვებს შორის

არ არის რედაქტირების რეზიუმე
(r2.7.1) (ბოტის დამატება: eo:Lasta teoremo de Fermat)
[[ფაილი:Pierre de Fermat.jpg|thumb|150px|პიერ დე ფერმა]]
'''ფერმას ბოლო თეორემა''' (ხშირად '''ფერმას დიდი თეორემა''') ერთ-ერთი ყველაზე განთქმული თეორემაა მათემატიკის ისტორიაში, მდგომარეობს შემდეგში:
 
 
:არ არსებობს ისეთი ''a'', ''b'' და ''y'' [[მთელი რიცხვი|მთელი რიცხვები]], რომელთათვისაც სრულდება ტოლობა <math>a^n+b^n=y^n</math>, სადაც ''n > 2''(n ორზე მეტი მთელი რიცხვია).
 
 
ფერმას ბოლო თეორემა ალბათ მათემატიკის ყველაზე პოპულარული თეორემაა. იგი ჩამოაყალიბა ფრანგმა მათემატიკოსმა [[ფერმა, პიერ|პიერ ფერმამ]] [[დიოფანტე|დიოფანტეს]] წიგნ "არითმეტიკაზე" მინაწერის სახით, რასაც დაუმატა, რომ მან გადაჭრა ეს ამოცანა, მხოლოდ ადგილის უქონლობის გამო ვერ ახერხებდა დამტკიცების იქვე დაწერას. დღესდღეობით ცნობილია, რომ ამოცანის ამოხსნა შეუძლებელი იყო ფერმის დროინდელი ელემენტარული მათემატიკის საშუალებით. ასე რომ, დამტკიცება, რომელზედაც ფერმა მიუთითებდა, სავარაუდოდ მცდარი იყო ან საერთოდ არ არსებობდა.
ანონიმური მომხმარებელი